Watch for new blogs going live February 5, 2007 ...
- Applied Math 40S (Winter '07) (Grade 12)
- Pre-Cal 40S (Winter '07) (Grade 12)
- AP Calculus AB continues ... (Grade 12)
An interactive learning ecology for students and parents in my Pre-Cal 40S class. This ongoing dialogue is as rich as YOU make it. Visit often and post your comments freely.
- Applied Math 40S (Winter '07) (Grade 12)
- Pre-Cal 40S (Winter '07) (Grade 12)
- AP Calculus AB continues ... (Grade 12)
Solution:
6C4 . 5C3
= 150
Solution:
P(A) * P(B) = 1/2
3/4 * P(B) = 1/2
P(B) = 1/2 * 4/3
P(B) = 2/3
(3) Peter places 5 equal-sized tiles in a cloth bag. Each tile has a letter on it. The letters are P, E, T, E and R. The probability that Peter selects the 5 tiles, one at a time, in order such that they spell PETER, correct to the nearest hundredth, is
The answer is 0.02.
>
(4) A child 2 quarters, 2 dimes, and 3 nickels in his pocket, but he does not understand the value of any of the coins. He puts 35cents worth of candy on the counter at a store and randomly selects two coins from his pocket. The probability that the two coins he selects will have a total at least as high as the value of the candy is:
(5) It is known that 53% of graduating are boys. Three are chosen at random. Given that at least two of the three grads are boys, determine the probability that all three of the grads are boys. ( Answer accurate to at least 4 decimal places. )
The number of ways to get to point C is RRRDD which is 5!/3!2!. The number of ways to get to point B is RRD which is 3!/2!. The number of ways to get to point B over the number of ways to get to point C is 3/10
(7) It is known that about 5% of coffee cups used in a particular restaurant will be chipped. What is the probability that out of 10 cups selected at random, exactly 2 will be chipped?
CNCNNNNNNN
C - represents the chipped
N- represents not chipped
10!/8!2! (o.o5)² (0.95)^8
= 0.0746
(8) Three coins are tossed. What is the probability that at least two heads turn up?
These are the possibilities that you can get at least two heads
HHT = 1/8
HTH = 1/8
THH = 1/8
HHH = 1/8
The sum of these events is 1/2
(10) A jar contains 5 red and 7 blue marbles. What is the probability of pulling out 2 blue marbles in a row, without replacement?
(2) A certain kind of die has four sides, labelled 1 to 4. When the die is rolled, each side has a probability of 1/4 that it will appear on the bottom. If the die is rolled 5 times, what is the probability that the side labelled “3" appears on the bottom in exactly two of the five rolls?
3N3NN
= 5!/ 2!3! (1/4)² (3/4)³
(4) Over the course of his basketball career, Julius succeeded in making a free throw in 75% of his attempts. In a randomly selected game, he attempted to make a free throw 12 times. What is the probability that he succeeded in 8 of the 12 attempts? (You don't need to know anything about basketball to answer this problem.)
12C8 (0.75)^8 (0.25)^4
(5) Three different names are randomly selected from the following list of five names. Max, Kim, Codie, Lee and, Alex. Determine the probability that “Kim” is one of the three names selected.
(1· 4C2)/ 5C3
= 3/10
(9) Assuming equally likely probabilities for male and female births, what is the probability that a four-child family will have at least one boy?
P(all girls) = (1/2)^4 = 1/16
P( at least 1 boy) = 1 - 1/16 = 15/16
After we had discussed about the on-line quiz, we proceed to our topic in Geometric sequences.
A mathematician named Carl Friedrich Gauss is a brilliant student. One day his teacher got angry because the class is so noisy. She gave an activity to keep them busy. She asked them to add the numbers from 1 to 100. Gauss came out with a better solution. He instantly computed the answer 5050.
t1, t1 + d, t1 + 2d, t1 + 3d, . . . . . . t1 +97d , t1 + 98d, t1 + 99d
Find the sum of the arithmetic sequence 2, 7, 12 17, . . . . S 51
S51 = 51/2 [2(2) + (51-1) 5 ]
= 51/2 [ 4 + 250 ]
=51/2 (254)
= 6477
given the geometric sequence 16, 8, 4, 2, . . . .Find the sum of this sequence up to th 10th term.
r = 1/2
t1 = 16
It's a new year with new units, new tests, and new learning. And how will you meet those challenges?!
P(C|P) = 4900/(4900 + 19900)
the first tree branch representing one of the couple has 0.44 chance of getting blood type "O" and the second branch representing the second couple has 0.44 chance getting type "O" also. we use "Multiplying Probability" since we want to find out what is the probability that both couples have the same type "O". (HO)HO) = Santa clause? HO NO HO NO I'm just kidding the answer is (0.44)(0.44) = .1936 or 19% that both of them have the same blood type "O".
2nd period class
In a group of 30 students what is is the probability that at least two have the same birthday?
*find the probability that nobody else have the same birthday
* use Pick formula since the order matters
*(# of days in a year)P(# of students) divided by (# of days in a year)^(# of students)
365P30/365^30 = 0.26 then subtract it from 1 ( 1- 0.26 =74%)
therefore the probability of at least two students have the same birthday is 74% (3o students)
and then one of my classmate asked him if our answer for this question was really true....in a 30 people group is there really a 74% chance of picking at least two people that have the same birthday? but most of our classmates are "missing"*wink**wink* so he started getting students on the hall way to make a group of 30 students and then he asked us one by one our birthdays but in our 30 group of students no one has the same birthday so he went back on the hallway to get some more people to raise the chances............were like HO HO HO HO laughing but we forgot to make a list and everyone was like HO NO HO NO no one made a list oi that was fun..............
sorry I couldn't get all the notes for this question :)
T
E
N
N
Y
S
O
N
THE SCRIBE IS TENNYSON .....................FOR MONDAY